USN LBRARY

Fourth Semester B.E Degree Examination, July/Auga

Common to All Branches
Advanced Mathematics - II

Time: 3 hrs.] [Max.Marks: 100

Note: 1. Answer any FIVE full questions. 2. All questions carry equal marks

- 1. (a) Find the angle between two lines whose direction Cosines are  $(l_1, m_1, n_1)$  and  $(l_2, m_2, n_2)$  (6 Marks)
  - (b) Find the angle between any two diagonals of a cube. (7 Mark
  - (c) Find the coordinates of the foot of the perpendicular from A(1,1,1) to the line Joining b(1, 4, 6) and C(5, 4, 4). (7 Marks)
- 2. (a) Derive the equation to the plane in the intercept from  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$  (6 Marks)
  - (b) Find the equation of the plane which passes through the point (3,-3,1) and is normal to the line joining the points (3,2,-1) and (2,-1,5). (7 Marks)
  - (c) Find the angle between the planes x y + z 6 = 0 and 2x + 3y + z + 5 = 0.

    (7 Marks)
- 3. (a) Determine the value of a so that  $\vec{A}=2\hat{l}+a\hat{J}+\hat{k}$  and  $\vec{B}=4\hat{i}-2\hat{J}-2\hat{k}$  are perpendicular. (6 Marks)
  - (b) Prove that  $[\vec{A} + \vec{B}, \ \vec{B} + \vec{C}, \ \vec{C} + \vec{A}] = 2[\vec{A}, \vec{B}, \vec{C}]$  (7 Marks)
  - (c) Find the constant a so that the vectors  $2\hat{l} \hat{J} + \hat{k}$ ,  $\hat{l} + 2\hat{J} 3\hat{k}$  and  $3\hat{l} + a\hat{J} + 5\hat{k}$  are coplanar. (7 Marks)
- 4. (a) If  $\vec{r} = sinl\hat{i} + Cost\hat{j} + t\hat{k}$ ,  $find \frac{d\vec{r}}{dt}$ ,  $\frac{d^2\vec{r}}{dt^2}$ ,  $|\frac{d\vec{r}}{dt}|$  and  $|\frac{d^2\vec{r}}{dt^2}|$ . (6 Marks)
  - (b) If  $\vec{A} = \vec{A}(t)$  and  $\vec{B} = \vec{B}(t)$ , where t is a scalar variable, Prove that  $\frac{d}{dt} \left( \vec{A} \cdot \vec{B} \right) = \vec{A} \cdot \frac{d\vec{B}}{dt} + \frac{d\vec{A}}{dt} \cdot \vec{B}$  (7 Marks)
  - (c) A particle moves so that its position vector is given by  $\vec{r} = Coswt \hat{l} + sinwt \hat{J}$ . Where  $\omega$  is a constant. Show that
    - i) the velocity  $\vec{V}$  of the particle is perpendicular to  $\vec{r}$
    - ii) the acceleration  $\vec{a}$  is directed towards the origin.
- (7 Marks)
- 5. (a) Find a unit normal vector to the surface  $x^2y + 2xz = 4$  at the point (2, -2, 3) (6 Marks
  - (b) If  $\vec{F} = (x+y+1)\hat{l} + \hat{J} = (x+y)\hat{k}$ , show that  $\vec{F} \cdot Cur! \vec{F} = 0$  (7 Marks)
  - (c) Find the constants a,b,c so that the vector  $\vec{F}=(x+2y+az)\hat{i}+(5x-3y-z)\hat{J}+(4x+cy+2z)\hat{k}$  is irrotational. (7 Marks)

Page No... 2

MATDIP401

6. (a) Find the Laplace transform of  $f(t) = e^{at}$ 

(5 Marks)

(b) Find i)  $L\left[e^{-t}\,\cos^2\,t\right]$  ii)  $L\left[\frac{1-e^{at}}{t}\right]$ 

(5+5 Marks)

(c) Find L[t sinat]

(5 Marks)

7. (a) If L[f(t)] = F(s), then show that  $L\left[\int_0^t f(t)dt\right] = \frac{1}{s}F(s)$ 

(5 Marks)

(b) Find i)  $L^{-1}\left[\frac{s+2}{s^2-4s+13}\right]$  ii)  $L^{-1}\left[\frac{4s+5}{(s-1)^2(s+2)}\right]$ 

(5+5 Marks)

(c) Find  $L^{-1} \left[ log \frac{s+a}{s+b} \right]$ 

(5 Marks)

8. (a) Using Laplace transforms, solve

$$\frac{d^2y}{dt^2} - 2 \frac{dy}{dt} + y = e^{-t}$$
 given that  $y = 2$ ,  $\frac{dy}{dt} = -1$  at  $t = 0$ 

(10 Marks)

(b) Solve the simultaneous equations using Laplace transforms:

$$\frac{dx}{dt} + y = sint$$
  $\frac{dy}{dt} + x = Cost$  given that  $x = 2, y = 0$  for  $t = 0$ 

(10 Marks

### USN

# Fourth Semester B.E Degree Examination, July July

# Common to All Branches Advanced Mathematics - II

Time: 3 hrs.]

[Max.Marks: 100

Note: 1. Answer any FIVE full questions. 2. All questions carry equal marks

1. (a) Find the angle between any two diagonals of a cube.

(6 Marks)

(b) With usual notation derive the equation of a plane in the form

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

(7 Marks)

- (c) Find the equation of the plane through the points (1,-2,2),(-3,1,-2) and perpendicular to the plane 2x-y-z+6=0 (7 Marks)
- 2. (a) Find the equations of a straight line perpendicular to both the lines

$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{3}$$
 and  $\frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}$ 

and passing through their point of intersection.

(6 Marks)

- (b) Find the reflection of the point (1,-2,3) in the plane 2x + 3y + 2z + 3 = 0
- (c) Find the magnitude and the equations of the line of shortest distance between the lines

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$$
 and  $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$  (7 Marks)

- 3. (a) Find a vector of magnitude 12 units which is perpendicular to the vectors 4i-j+3k and -2i+j-2k (6 Marks)
  - (b) Given  $\vec{a}=2i+3j-k$ ,  $\vec{b}=i-2k-j$  and  $\vec{c}=-i+2j+2k$ , find i)  $[\vec{a},\vec{b},\vec{c}]$  ii)  $(\vec{a}\times\vec{b})\times\vec{c}$  (7 Marks)
  - (c) Find the value of  $\lambda$  so that the points A(-1,4,-3), B(3,2,-5), C(-3,8,-5) and  $D(-3,\lambda,1)$  may lie in one plane. (7 Marks)
- 4. (a) If  $\frac{d\vec{a}}{dt} = \vec{w} \times \vec{a}$ ,  $\frac{d\vec{b}}{dt} = \vec{w} \times \vec{b}$ , show that

$$\frac{d}{dt}(\vec{a} \times \vec{b}) = \vec{w} \times (\vec{a} \times \vec{b})$$

(6 Marks)

- (b) A particle moves along a curve  $x=cos2t,\ y=sin2t,\ z=t.$  Find the velocity and acceleration at  $t=\frac{\pi}{8}$  along  $\sqrt{2}i+\sqrt{2}j+k$  (7 Marks)
- (c) Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $x = z^2 + y^2 3$  at the point (2, -1, 2)
- 5. (a) Prove that  $Curl(\phi \vec{A}) = \phi(Curl\vec{A} + (grad\phi) \times \vec{A}$

(6 Marks)

- (b) If  $\vec{F} = (x+y+1)i + j (x+y)k$  show that  $\vec{F}.curl\vec{F} = 0$  (7 Marks)
- (c) Prove that  $\nabla^2(r^n) = n(n+1)r^{n-2}$  where r = |xi + yj + zk|

(7 Marks)

.6. (a) If 
$$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt$$
 show that  $L\{t^n\} = \frac{n!}{s^{n+1}}$ 

(5 Marks)

(b) Find i)  $L\{e^{3t+7} + 4sin^2 3t + 2cos 4tcos 2t\}$ ii)  $L\{\frac{cos 2t - cos 3t}{t}\}$ 

(5+5 Marks)

(c) Show that 
$$\int_{0}^{\infty} te^{-3t} sint \ dt = \frac{3}{50}$$

(5 Marks)

7. (a) If 
$$L\{f(t)\}=F(s)$$
, show that  $L\{\int\limits_0^t f(t)dt\}=\frac{1}{s}F(s)$ 

(5 Marks)

(b) Find the inverse laplace transforms of the following functions:

i) 
$$\frac{s}{(s+2)(s^2+1)}$$

ii) 
$$log\{\frac{s^2+1}{s(s-1)}\}$$

iii) 
$$\frac{s+1}{s^2-s+1}$$

(5+5+5 Marks)

8. (a) Using Laplace transform method solve

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = e^{2t} \text{ with } y(0) = 0 \text{ and } y'(0) = 1$$

(10 Marks)

(b) Solve the following differential equations using laplace transform method.

$$\frac{dx}{dt} + \frac{dy}{dt} + x = -e^{-t}$$

$$\frac{dx}{dt} + 2\frac{dy}{dt} + 2x + 2y = 0$$

given that 
$$x(0) = -1, y(0) = 1$$

(10 Marks)

Page No.1.11

USN STARRY

Fourth Semester B.E Degree Examination, July/August

Common to All Branches
Advanced Mathematics - II

Time: 3 hrs.]

[Max.Marks: 100

Note: 1. Answer any FIVE full questions. 2. All questions carry equal marks

1. (a) Find the angle between any two diagonals of a cube.

(6 Marks)

(b) With usual notation derive the equation of a plane in the form

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

(7 Marks)

- (c) Find the equation of the plane through the points (1,-2,2),(-3,1,-2) and perpendicular to the plane 2x-y-z+6=0 (7 Marks)
- 2. (a) Find the equations of a straight line perpendicular to both the lines

$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{3}$$
 and  $\frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}$ 

and passing through their point of intersection.

(6 Marks)

- (b) Find the reflection of the point (1,-2,3) in the plane 2x + 3y + 2z + 3 = 0(7 Marks)
- (c) Find the magnitude and the equations of the line of shortest distance between the lines

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$$
 and  $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$  (7 Marks)

- 3. (a) Find a vector of magnitude 12 units which is perpendicular to the vectors 4i-j+3k and -2i+j-2k (6 Marks)
  - (b) Given  $\vec{a}=2i+3j-k$ ,  $\vec{b}=i-2k-j$  and  $\vec{c}=-i+2j+2k$ , find

i) 
$$[\vec{a}, \vec{b}, \vec{c}]$$
 ii)  $(\vec{a} \times \vec{b}) \times \vec{c}$ 

(7 Marks)

- (c) Find the value of  $\lambda$  so that the points A(-1,4,-3), B(3,2,-5), C(-3,8,-5) and  $D(-3,\lambda,1)$  may lie in one plane. (7 Marks)
- **4.** (a) If  $\frac{d\vec{a}}{dt} = \vec{w} \times \vec{a}$ ,  $\frac{d\vec{b}}{dt} = \vec{w} \times \vec{b}$ , show that

$$\frac{d}{dt}(\vec{a} \times \vec{b}) = \vec{w} \times (\vec{a} \times \vec{b})$$

(6 Marks)

- (b) A particle moves along a curve  $x=cos2t,\ y=sin2t,\ z=t.$  Find the velocity and acceleration at  $t=\frac{\pi}{8}$  along  $\sqrt{2}i+\sqrt{2}j+k$  (7 Marks)
- (c) Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $x = z^2 + y^2 3$  at the point (2, -1, 2)
- **5.** (a) Prove that  $Curl(\phi \vec{A}) = \phi(Curl\vec{A} + (grad\phi) \times \vec{A}$

(6 Marks)

- (b) If  $\vec{F} = (x+y+1)i + j (x+y)k$  show that  $\vec{F}.curl\vec{F} = 0$  (7 Marks)
- (c) Prove that  $\nabla^2(r^n) = n(n+1)r^{n-2}$  where r = |xi + yj| + zk|

(7 Marks)

(5 Marks)

(b) Find i)  $L\{e^{3t+7} + 4sin^23t + 2cos4tcos2t\}$ 

ii) 
$$L\{\frac{cos2t-cos3t}{t}\}$$

(5+5 Marks)

(c) Show that  $\int_{0}^{\infty} te^{-3t} sint \ dt = \frac{3}{50}$ 

(5 Marks)

7. (a) If 
$$L\{f(t)\}=F(s)$$
, show that  $L\{\int\limits_0^t f(t)dt\}=\frac{1}{s}F(s)$ 

(5 Marks)

(b) Find the inverse laplace transforms of the following functions:

i) 
$$\frac{s}{(s+2)(s^2+1)}$$

ii) 
$$log\{\frac{s^2+1}{s(s-1)}\}$$

iii) 
$$\frac{s+1}{s^2-s+1}$$

(5+5+5 Marks)

8. (a) Using Laplace transform method solve

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = e^{2t}$$
 with  $y(0) = 0$  and  $y'(0) = 1$ 

(10 Marks)

(b) Solve the following differential equations using laplace transform method.

$$\frac{dx}{dt} + \frac{dy}{dt} + x = -e^{-t}$$

$$\frac{dx}{dt} + 2\frac{dy}{dt} + 2x + 2y = 0$$
 given that  $x(0) = -1$ ,  $y(0) = 1$ 

(10 Marks)

USN

LIBRARY

Fourth Semester B.E Degree Examination, January R

Common to All Branches
Advanced Mathematics - II

Time: 3 hrs.]

22

[Max.Marks

Note: 1. Answer any FIVE full questions.

1. (a) The direction cosines l,m,n of two lines are connected by the relations l+m+n=0, 2lm+2ln-mn=0

Find them.

(8 Marks)

- (b) Define a plane. Find the equation of the plane in the normal form in the usual notation.

  (6 Marks)
- (c) Find the equation of the plane through the points (2,2,1),(1,-2,3) and parallel to the x-axis. (6 Marks)
- 2. (a) Find the symmetrical form the equations of the line

$$x + y + z - 1 = 0 = 2x - y - 3z + 1$$

(6 Marks)

- (b) Find the image of the point (2, -3, 4) with respect to the plane 4x + 2y 4z + 3 = 0
- (c) Find the equations of the two straight lines through the origin each of which intersects the straight line  $\frac{x-3}{2} = \frac{y-3}{1} = \frac{z}{1}$  and is inclined at an angle of 600 to it.
- 3. (a) If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are the position vectors of the vertices P, Q, R of a triangle, show that the vector area of the triangle PQR is

$$\frac{1}{2}(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b})$$

(6 Marks)

(b) Prove that  $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{c} \cdot \vec{a}) - \vec{c}(\vec{a} \cdot \vec{b})$ 

(8 Marks)

(c) Show that the four points whose position vectors are

$$3\vec{i} - 2\vec{j} + 4\vec{k}, 6\vec{i} + 3\vec{j} + \vec{k},$$
  
 $5\vec{i} + 7\vec{j} + 3\vec{k} \text{ and } 2\vec{i} + 2\vec{j} + 6\vec{k}$ 

are coplanar.

(6 Marks)

4. (a) A particle moves along the curve

$$x = t^3 + 1$$
,  $y = t^2$ ,  $z = 2t + 5$ ,

where 't' is the time. Find the components of its velocity and acceleration at time t=1 in the direction  $2\vec{i}+3\vec{j}+6\vec{k}$  (7 Marks)

- (b) The temperature at any point in space is given by T = xy + yz + zx. Determine the derivative of T in the direction of the vector  $3\vec{i} 4\vec{k}$  at (1,1,1) (6 Marks)
- (c) If  $\phi$  is a scalar field and  $\vec{A}$  is a vector field, prove that  $\operatorname{curl}(\circ \vec{A}) = \circ(\operatorname{curl} \vec{A}) + (\operatorname{grad} \phi) \times \vec{A}$  (7 Marks)
- 5. (a) Find the values of the constants a, b, c for which the vector

$$\vec{V} = (x+y+az)\vec{i} + (bx+3y-z)\vec{j} + (3x+cy+z)\vec{k}$$
 is irrotational.

(b) If  $\phi$  is a scalar field, prove that  $\operatorname{curl}(\operatorname{grad}\phi)=0$ 

(6 Marks) (7 Marks)

Contd .. 2

(c) Prove that  $\frac{\vec{r}}{|\vec{r}|^3}$  where  $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$  is both solenoidal and irrotational.

(7 Marks)

6. (a) Find i)  $L(\cos at)$  ii)  $L(\sin h at)$ 

(8 Marks)

(b) Find i)  $L(e^{-3t} \cos t \sin 2t)$ 

ii) 
$$L(\frac{\sin at}{t})$$

iii)  $L(t^3 \cos t)$ 

iv) 
$$L \int_{0}^{t} f(t) dt$$

(12 Marks)

7. (a) Express the following function in terms of the unit step function and hence find the Laplace transform.

$$f(t) = \begin{cases} t^2, \ 1 < t \le 2 \\ 4t, \ t > 2 \end{cases}$$
 (8 Marks)

(b) Find i)  $L^{-1} \left[ \frac{4s+5}{(s-1)^2(s+2)} \right]$ 

ii) 
$$L^{-1}\left[\frac{1}{(s-1)(s^2+1)}\right]$$

iii) 
$$L^{-1}\left(\log\left(\frac{s+a}{s+b}\right)\right)$$

(12 Marks)

8. (a) Prove that

$$Lf''(t) = s^2 Lf(t) - sf'(0) - f''(0)$$

(6 Marks)

(b) By employing the convolution theorem, find

$$L^{-1} \frac{s}{(s^2+a^2)^2}$$

(6 Marks)

(c) Solve the equation

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0$$

under the conditions y(0) = 1, y'(0) = 0

(8 Marks)

### SRINIVAS INSTITUTE OF FECHNOLOGY LIBRARY, MANGALORE

1.40

MANDIP401

USN

SN O

Fourth Semester B.E Degree Examination, February/Mare

Common to All Branches

(Old Scheme)

# Advanced Mathematics - II

Time: 3 hrs.]

[Max.Marks: 100

Note: 1. Answer any FIVE full questions.

1. (a) If A(4,3,2), B(5,4,6), C(-1, 1,5) are the corners of a triangle find the co-ordinates of the point in which the bisector of the angle A meets the side BC.

(6 Marks)

(b) Find the ratio in which X O Y plane divides the line joining of the points (-3, 4, 8) and (5, -6, 4) and thus write the co-ordinates of the point of division.

(7 Marks)

- (c) Prove that the condition that the lines whose direction cosines are l, m, n & l', m', n' should be
  - i) Perpendicular if l'' + mm' + nn' = 0
  - ii) Parallel if l = l', m = m', n = n'.

(7 Marks)

- 2. (a) Find the equation of the plane which passes through the point (3, -3, 1) and is parallel to the plane 2x + 3y + 5z + 6 = 0.
  - (b) Find the distance of the point (1, 2, 3) from the plane, x-y+z=5 measured parallel to the line  $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$  (7 Marks)
  - (c) Obtain the equation of the plane passing through the line of intersections of the planes 7x 4y + 7z + 16 = 0&4x + 3y 2z + 13 = 0 and perpendicular to the plane x y 2z + 5 = 0
- 3. (a) Find div F and cur F when

$$F = (3x^2 - 3yz)i + (3y^2 - 3xz)j + (3z^2 - 3xy)k$$

(6 Marks)

(b) Prove that  $\nabla^2 r^n = n(n+1)r^{n-2}$ where  $r = |\vec{r}| = (x^2 + y^2 + z^2)^{\frac{1}{2}}$ 

(7 Marks)

(c) A particle moves along a curve whose parametric equations are  $x=e^{-t}$ ,  $y=2\cos 3t$ ,  $z\geq 2\sin 3t$ , where t is time. Find the velocity and acceleration at any time t. Also find the initial velocity & initial accelerations. (7 Marks)

# Page No... 2

# MATDIP401

(5 Marks)

- 4. (a) Find the directional derivative of the function  $\phi = xyz$  along the direction of the normal to the surface  $xy^2 + yz^2 + zx^2 = 3$  at the point (1, 1, 1).
  - (b) Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $x^2 + y^2 z = 3$  at the point (2, -1, 2).
  - (c) Show that  $\vec{F} = \frac{xi+yj}{x^2+y^2}$  is both solenoidal and irrotational. (7 Marks)
  - 5. (a) Prove that

we that
$$\operatorname{curl} (\operatorname{curl} F) = \operatorname{grad} \operatorname{div} F - \nabla^2 F$$

$$\operatorname{curl} (\operatorname{curl} F) = \operatorname{grad} \operatorname{div} F - \nabla^2 F$$

- (b) If  $V_1$  and  $V_2$  be the vectors joining fixed points  $(x_1, y_1, z_1)$  & $(x_2, y_2, z_2)$  respectively to a variable point then prove that  $div(V_1 \times V_2) = 0$ .
- (c) Find the unit tangent vector at any point on the curve (7 Marks)  $x = t^2 + 1$ , y = 4t - 3,  $z = 2t^2 - 6t$ .
- (5 Marks) **6.** (a) Prove that :  $L\{\sin at\} = \frac{a}{s^2 + a^2}$ 
  - (b) Find
    - $L\{e^{-3t} \sin 2t\}$
    - ii)  $L\{\frac{t}{2a} sinhat\}$
  - (15 Marks) iii)  $L\{\frac{1-e^t}{t}\}$
- 7. (a) If  $L\{f(t)\} = J(s)$ , then  $L\left\{\frac{1}{t} f(t)\right\} = \int_{c}^{\infty} J(s) ds$

provided the integral exits

- (b) Find
  - i)  $L^{-1}\left\{\frac{s^2-3s+4}{s^3}\right\}$
  - ii)  $L^{-1}\left\{\frac{5s+3}{(s-1)(s^2+2s+5)}\right\}$
  - (15 Marks) iii)  $L^{-1}\left\{log(\frac{s+1}{s})\right\}$
- 8. (a) Solve the following using Laplace transform method (10 Marks)  $y'' - 3y' + 2y = 12e^{-t}$ , given that y(0) = 2, y'(0) = 6.
  - (b) Using Laplace transform method solve the following simultaneous equations.

and Laplace transform 
$$\frac{dx}{dt} + \frac{dy}{dt} + 2x = 1$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 3y = 0$$

$$\text{given } x = 0 = y \text{ at } t = 0$$

$$** ***$$

USN\\$

Fourth Semester B.E Degree Examination Berry March 2005

# Common to All Branches

# Advanced Mathematics - II

Time: 3 hrs.]

[Max.Marks: 100

1. Answer any FIVE full questions. 2. All questions carry equal marks.

1. (a) Find the angle between any two diagonals of a cube.

(7 Marks)

- (b) If  $(l_1, m_1, n_1)$  and  $(l_2, m_2, n_2)$  are the direction cosines of two lines subtending an angle  $\theta$  between them then prove that  $cos\theta = l_1 l_2 + m_1 m_2 + n_1 n_2$ .
- (c) Compute the angle between the lines whose direction ratios are 2, 1, 1 and  $4,(\sqrt{3}-1),(-\sqrt{3}-1).$ (6 Marks)
- 2. (a) Derive the equation of the plane in the normal form lx + my + nz = p.(7 Marks)
  - (b) Find the equation of the plane passing through the point (1, 2, -1) and perpendicular to the planes x + y - 2z = 5 and 3x - y + 4z = 12.

(7 Marks)

- (c) Find the image of the point (1,-1,2) in the plane 2x+2y+z=11. (6 Marks)
- **3.** (a) Find the value of the constant  $\lambda$  so that the vectors  $\vec{A}=i-j+2k,\ \vec{B}=2i+j-3k$ and  $\vec{C} = \lambda i - j + k$ 
  - (b) For three vectors  $\vec{A}, \vec{B}, \vec{C}$ , prove that  $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) \vec{C}(\vec{A} \cdot \vec{B})$
  - (c) If  $\vec{A} = 4i + 3j + k$  and  $\vec{B} = 2i j + 2k$ , find a unit vector N perpendicular to the vectors  $\vec{A}$  and  $\vec{B}$  such that  $\vec{A},~\vec{B},N$  form a right handed system. (6 Marks)
- 4. (a) At any point of the curve x = 3cost, y = 3sint, Z = 4t find i) Tangent vector and unit tangent vector at t = 0
  - (b) A particle moves along the curve  $x = t^3 + 1$ ,  $y = t^2$ , z = 2t + 5, where t is the time. Find the velocity and the acceleration of the particle at the time t = 1. (7 Marks)
  - (c) If  $\frac{d\vec{A}}{dt} = \vec{\omega} \times \vec{A}$  and  $\frac{d\vec{B}}{dt} = \vec{\omega} \times \vec{B}$ , then prove that  $\frac{d}{dt}(\vec{A} \times \vec{B}) = \vec{\omega} \times (\vec{A} \times \vec{B})$  (6 Marks)
- 5. (a) Find a unit normal vector to the surface  $x^2 + 3y^2 + 2z^2 = 6$  at the point p(2,0,1)
  - (b) Prove that for every field  $\vec{V}, div(curl|\vec{V}) = 0$  where  $\vec{V} = V_1 i + V_2 j + V_3 k$  (7 Marks)
  - (c) Compute the values of the constants a,b,c such that the vector  $V^{i}=(x+y+az)i+(bx+3y-z)j+(3x-cy+z)k$  is irrotational. (6 Marks)
- **6.** (a) If  $f(t) = \begin{cases} 2t for & 0 < t < 5 \\ -1 for & t > 5 \end{cases}$ , find  $L\{|f(t)\}\}$ . (5 Marks)

(b) Find i)  $L\{\cos^3 2t\}$ 

ii) 
$$L\left\{\frac{\sin^2 t}{t}\right\}$$

iii) 
$$L\left\{e^{-3t}sin^22t\right\}$$

(15 Marks)

7. (a) If 
$$L\{f(t)\}=\int\limits_0^\infty e^{-st}f(t)dt$$
, then prove that 
$$L\{f''(t)\}=s^2L\{f(t)\}-sf(0)-f'(0)$$

(5 Marks)

(b) Find i) 
$$L^{-1} \left\{ \frac{1}{s^2 - 5s + 6} \right\}$$

ii) 
$$L^{-1}\left\{\frac{s-1}{s^2+25-6s}\right\}$$

iii) 
$$L^{-1}\left\{log\left(1+\frac{\omega^2}{s^2}\right)\right\}$$

(15 Marks)

- 8. (a) Using Laplace transforms, solve  $\frac{d^2y}{dt^2} 2\frac{dy}{dt} + y = e^t$  with y(0) = 2, y'(0) = -1.
  - (b) Using Laplace transforms, solve the simultaneous differential equations given below.

$$\frac{dx}{dt} - y = e^t$$

$$\frac{dy}{dt} + x = sint$$

where 
$$x(0) = 1$$
 and  $y(0) = 0$ 

(10 Marks)



# Fourth Semester B.E Degree Examination, July/August 2005

# Common to All Branches

(Old Scheme)

# Advanced Mathematics - II

Time: 3 hrs.]

[Max.Marks: 100

Note: 1. Answer any FIVE full questions. 2. All questions carry equal marks

- 1. (a) Define the direction cosines of a straight line. If l,m,n are the direction cosines of a straight line, Prove that  $l^2 + m^2 + n^2 = 1$ (6 Marks)
  - (b) If  $\theta$  is the angle between two lines whose direction cosines are  $(l_1, m_1, n_1)$  and  $(l_2, m_2, n_2)$ , prove that  $\cos\theta = l_1 l_2 + m_1 m_2 + n_1 n_2$

(c) Find the reflection of the point (2,-1,3) in the plane 3x-2y-z=1

- 2. (a) Derive the equation of the plane in the intercept form  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (6 Marks)
  - (b) Find the equation of the plane through the line of intersection of the planes x+y+z = 1 and 2x+3y+4z = 5 and perpendicular to the plane x-y+z = 0(7 Marks)
  - (c) Find the angle between the planes 2x-y+z=1 and x+y+2z=3(7 Marks)
- **3.** (a) Find a unit vector normal to the plane of

$$ec{a}=3i-2J+4K,\quad ec{b}=i+J-2K$$

Find also the sine of the angle between them.

(6 Marks)

(7 Marks)

(7 Marks)

(b) If 
$$\vec{A}=i-2J-3K$$
,  $\vec{B}=2i+J-K$ ,  $\vec{C}=i+3J-K$   
Find  $(\vec{A}\times\vec{B})\times(\vec{B}\times\vec{C})$  (7 Marks)

(c) Show that  $\vec{A}=i-2J+3K, \quad \vec{B}=2i+J+K, \quad \vec{C}=3i+4J-K$  are coplanar.

4. (a) If 
$$\vec{A} = 5t^2i + tJ - t^3K$$
,  $\vec{B} = \sin t \ i - \cos t \ J$   
Find: (i)  $\frac{d}{dt}(\vec{A} \times \vec{B})$  (6 Marks)

(b) A particle moves along the curve  $x = t^3 - 4t, y = t^2 + 4t, z = 8t^2$  $3t^3$ , where t

denotes time. Find the magnitude of velocity and acceleration in the direction of the vector 2i+2J-K (7 Marks)

- (c) Find the directional derivative of  $\phi = xy^2 + yz^3$  at the point (2,-1,1) in the direction of the vector i+2J+2K (7 Marks)
- 5. (a) Prove that  $\nabla \cdot \nabla \times \vec{F} = 0$  (6 Marks)
  - (b) Find the divergence and curl of the vector

$$\vec{F} = (xyz + y^2z)i + (3x^2y + y^2z)J + (xz^2 - y^2z)K$$
(7 Marks)

(c) Find the constants a,b, so that the vector

$$\vec{F} = (axy + z^3)i + (3x^2 - z)j + (bxz^2 - y)K \text{ is irrotatoinal}$$
 (7 Marks)

- **6.** (a) Find the laplace transform of  $f(t) = e^{at}$  (5 Marks)
  - (b) Find (i)  $L\{sin^32t\}$

(ii) 
$$L\left\{\frac{1-\cos t}{t}\right\}$$
 (5+5=10 Marks)

- (c) Find  $L\{t \ sin \ at\}$  (5 Marks)
- 7. (a) Find  $L\{f(t)\}=F(s)$  then show that

$$L\left\{\int\limits_{0}^{t} f(u)du\right\} = \frac{1}{s}F(s) \tag{5 Marks}$$

(b) Find:

$$L^{-1}\left\{\frac{s+3}{s^2-4s+13}\right\}$$

$$L^{-1}\left\{\frac{4s+5}{(s-1)^2(s+2)}\right\}$$

$$L^{-1}\left\{\frac{s+1}{s-1}\right\}$$
 (5+5+5=15 Marks)

8. (a) Using Laplace transform method solve:

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t} \text{ with}$$

$$y(o) = y^1(o) = 1$$
(10 Marks)

(b) Solve the following differential equations using loplace transform method

$$\frac{dx}{dt} + 5x - 2y = t$$

$$\frac{dy}{dt} + 2x + y = 0$$

Given that 
$$x = y = 0$$
 when  $t = 0$  (10 Marks)

1

•) 1

)

)

)

# Fourth Semester B.E. Degree Examination, Dec.08 / Jan.09 **Advanced Mathematics II**

3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

Show that the lines whose direction cosines are given by the equations 1+m+n=0,  $al^2 + bm^2 + cn^2 = 0$  are perpendicular if a+b+c = 0.

- Show that the angle between any two diagonals of a cube is  $\cos^{-1}\left(\frac{1}{3}\right)$ . (07 Marks)
- If P, Q, A, B are (1, 2, 3), (-2, 1, 3), (4, 4, 2), (2, 1, -4), find the projection of PQ on AB. (06 Marks)
- Find the equation of the plane in the intercept form. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the
- planes 7x + y + 2z = 6 and 3x + 5y 6z = 8.
- Show that the lines  $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ ,  $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$  are coplanar. Find their common point.
- Show that the four points whose position vectors are 3i-2j+4k, 6i+3j+k, (06 Marks) 5i + 7j + 3k and 2i + 2j + 6k are coplanar.
- b. A particle moves along the curve  $x = t^3 + 1$ ,  $y = t^2$ , z = 2t + 5 where t is the time. Find the components of its velocity and acceleration at t = 1 in the direction 2i + 3j + 6k. (07 Marks)
- c. If  $\overrightarrow{A} = 4i + 3j + k$ ,  $\overrightarrow{B} = 2i j + 2k$  find a unit vector N perpendicular to vectors A and B. Such that A, B, N form a right-handed system.
- Find the angle between the tangents to the curve  $\vec{r} = t^2i + 2tj t^3k$  at the point  $t = \pm 1$ .
- b. Let a = i + j k, b = i j + k, c = i j k. Find the vector  $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ . (07 Marks)
- c. Find a unit vector normal to the surface  $x^2 + 3y^2 + 2z^2 = 6$  at (2, 0, 1). (07 Marks)
- Find the directional derivative of  $f(x,y,z) = xy^2 + yz^3$  at the point (2, -1, 1) in the direction of i+2j+2k.
  - b. Find i)  $div(3x^2i + 5xy^2j + xyz^3k)$  at (1, 2, 3).
    - ii)  $\operatorname{curl} \left[ xyzi + 3x^2yj + \left( xz^2 y^2z \right) k \right]$ (07 Marks)
  - c. Find the values of the constants a, b, c for which the vector (07 Marks) v = (x + y + az)i + (bx + 3y - z)j + (3x + cy + z)k is irrotational.
- Find the Laplace transform of 6

Find the Laplace transform of
$$f(t) = \begin{cases} e^{t}; 0 < t < 1 \\ 0; t > 1 \end{cases}$$
(05 Marks)

- (05 Marks) b. Find  $L_{e^{-3t}}(2\cos 5t - 3\sin 5t)$ .
- (05 Marks) c. Evaluate L{tsin2t}.
- (05 Marks) d. Find  $L\left\{\frac{1-e^t}{t}\right\}$ . 1 of 2

7 Find the inverse Laplace transform for the following:

a. 
$$\frac{s^2 - 3s + 4}{s^3}$$
 (05 Marks)

b. 
$$\frac{s+2}{s^2-4s+13}$$
. (05 Marks)

c. 
$$\frac{s^2 + s - 2}{s(s + 3)(s - 2)}$$
 (05 Marks)

d. 
$$\log\left(\frac{s+a}{s+b}\right)$$
 (05 Marks)

8 a. Use Laplace transform method to solve,

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t \text{ with } x = 2, \frac{dx}{dt} = -1 \text{ at } t = 0.$$
 (10 Marks)

b. Solve the **following** simultaneous equations using Laplace transform method,

$$\frac{dx}{dt} - y = e^{t}; \frac{dy}{dt} + x = \sin t; \text{ given } x(0) = 1, y(0) = 0$$
(10 Marks)

\*\*\*\*

# Fourth Semester B.E. Degree Examination, June / July 08 Advanced Mathematics - II

ſime: 3 hrs. Max. Marks:100

# Note: Answer any FIVE full questions.

- Obtain an expression for the angle between two lines whose direction cosines are  $(\mathbb{1}_1,\,m_1,\,n_1)$  and  $(\mathbb{1}_2,\,m_2,\,n_2)$  . Hence obtain the condition for the lines to be perpendicular and parallel.
  - b. Prove that the lines whose direction cosines are given by the relations 1 + m + n = 0 and  $al^2 + bm^2 + cn^2 = 0$  are i) perpendicular, if a + b + c = 0, and ii) parallel,  $if\left(\frac{1}{a}\right) + \left(\frac{1}{b}\right) + \left(\frac{1}{c}\right) = 0$ . (07 Marks)
  - c. For what value of  $\lambda$ , are the four points  $(0, -1, \lambda)$ , (2, 1, -1), (1, 1, 1), (3, 3, 0) coplanar? Find the equation of the plane through them. (06 Marks)
- Find the equation of the plane through the line of intersection of the planes x + y + z = 1and 2x + 3y - z + 4 = 0 and perpendicular to the plane 2y - 3z = 4.
  - b. Find the image (reflection) of the line  $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$  in the plane 2x + y + z = 6.

12

- c. Show that the lines  $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ ;  $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$  are coplanar, find their common point and the equation of the plane in which they lie. (06 Marks)
- a. Determine  $\lambda$  and  $\mu$  by using vectors, such that the points (-1, 3, 2) (-4, 2, -2) and (5,  $\lambda$ ,  $\mu$ ) 3 lie on a straight line.
  - b. If four points whose position vectors are  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ ,  $\vec{d}$  are coplanar, show that  $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{a} \ \vec{b} \ \vec{d}] + [\vec{a} \ \vec{d} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{c}].$ (07 Marks)
  - c. For any three vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  prove that  $[\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{a} \cdot \vec{b}) \vec{c}$ . Hence find  $\vec{a} \times (\vec{b} \times \vec{c})$  for  $\vec{a} = \vec{i} + \vec{j} - \vec{k}$ ,  $\vec{b} = \vec{i} - \vec{j} + \vec{k}$ ,  $\vec{c} = \vec{i} - \vec{j} - \vec{k}$ . (06 Marks)
- The position vector of a particle at time t is  $\vec{r} = \cos(t-1)\vec{i} + \sin h(t-1)\vec{j} + \alpha t^3 \vec{k}$ . Find the condition imposed on  $\alpha$  by requiring that at time t = 1, the acceleration is normal to the position vector.
  - b. In what direction from (3, 1, -2) is the directional derivative of  $\phi = x^2 y^2 z^4$  maximum? Find also the magnitude of this maximum. (07 Marks)
  - c. Show that  $\nabla^2(\mathbf{r}^n) = \mathbf{n}(\mathbf{n}+1)\mathbf{r}^{n-2}$  for  $\mathbf{n} \neq -1$  and  $\vec{\mathbf{r}} = x\vec{\mathbf{i}} + y\vec{\mathbf{j}} + z\vec{\mathbf{k}}$ . (06 Marks)
- a. If  $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ ,  $r = |\vec{r}|$  and  $\vec{a}$  is a constant vector, find the value of div  $\left(\frac{\vec{a} \times \vec{r}}{r^n}\right)$ . 5

(07 Marks)

- b. Find the constant 'k<sub>1</sub>' so that  $\vec{A} = y(k_1x^2 + z)\vec{i} + x(y^2 z^2)\vec{j} + 2xy(z xy)\vec{k}$  is solenoidal.
  - (07 Marks)
- c. Show that  $\vec{F}$  curl  $\vec{F} = 0$  for  $\vec{F} = (x+y+1)\vec{i} + \vec{j} (x+y)\vec{k}$ . (06 Marks)

6 a. Prove that 
$$L[t^n] = \frac{n!}{S^{n+1}}$$
 when  $n = 0, 1, 2, 3, ----$ .

b. Find the Laplace transform of i)  $e^{-t} \cos^3 3t$  ii)  $t e^{2t} \sin^2 2t$ .

(07 Marks)

c. Find the Laplace transform of

$$\int_{0}^{t} \frac{e^{t} \sin t}{t} dt.$$

(06 Marks)

7 a. Prove that:

$$L^{-1} \left[ \frac{s}{s^4 + 4a^4} \right] = \frac{1}{2a^2} \sin at \sin h at . \tag{07 Marks}$$

b. Find

$$L^{-1}\left[\frac{s}{\left(s^2+a^2\right)^2}\right]. \tag{07 Matrix}$$

c. Find

$$L^{-1}\left[\cot^{-1}\frac{s}{2}\right]. \tag{06 Marks}$$

**8** a. Solve the following differential equation by Laplace transform method:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t, \text{ where } y(0) = 0 \text{ and } y'(0) = 1.$$
 (10 Marks)

b. Using Laplace transform method solve

$$\frac{dx}{dt} + 5x - 2y = t, \quad \frac{dy}{dt} + 2x + y = 0, \text{ being given } x = y = 0 \text{ when } t = 0$$
 (10 Marks)

\*\*\*\*

# Fourth Semester B.E. Degree Examination, June-July 2009 Advanced Mathematics - II

Time: 3 hrs.

**USN** 

Max. Marks:100

(07 Marks)

# Note: Answer any FIVE full questions

- 1 a. If l, m, n and l', m', n' are the direction cosines of the lines OP & OQ and  $\theta$  be the angle between them then show that  $\cos\theta = l l' + m m' + n n'$ . Also derive the condition for the perpendicularity of OP & OQ. (07 Marks)
  - b. Find the equation of the plane which passes through the point (3, -3, 1) and is
    - i) Parallel to the plane 2x + 3y + 5z + 6 = 0.
    - ii) Perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y 6z = 8. (07 Marks)
  - c. Find the equations to the two planes which bisects the angles between the planes 3x 4y + 5z = 3 and 5x + 3y 4z = 9. (06 Marks)
- 2 a. Obtain the equation of a plane passing through the line of intersection of the planes 7x 4y + 7z + 16 = 0 and 4x + 3y 2z + 13 = 0 and perpendicular to the plane x y 2z + 5 = 0. (07 Marks)
  - b. Find the equation of the two straight lines through the origin each of which intersects the straight line  $\frac{1}{2}(x-3) = y-3 = z$  and it is inclined at an angle of 60° to it. (07 Marks)
  - c. Find the magnitude and the equation of the shortest distance between the lines  $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$  and  $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$  (06 Marks)
- 3 a. If  $\vec{A} = i + 2j + 3k$ ,  $\vec{B} = -i + 2j + k$ ,  $\vec{C} = 3i + j$  Find P such that  $\vec{A} + \vec{PB}$  is perpendicular to  $\vec{C}$ . Also, find the dot product of A with B and A·(B+C). (07 Marks)
  - b. If  $\vec{A} = 4i + 3j + k$ ,  $\vec{B} = 2i j + 2k$  find a unit vector perpendicular to the plane containing both  $\vec{A}$  &  $\vec{B}$ . Also, show that A is not perpendicular to  $\vec{B}$ . (07 Marks)
  - c. Find the constant a such that the vectors  $\overrightarrow{AB} = ai 5j + 2k$ ,  $\overrightarrow{AD} = -7i + 14j 3k$ ,  $\overrightarrow{AC} = 11i + 4j + k$  are coplanar. (06 Marks)
- a. A particle moves along a curve x = e<sup>-t</sup>, y = cos3t, z = 2sin3t where t is the time variable. Determine its velocity and acceleration vectors and also, find the magnitudes of velocity and acceleration at t = 0.
  - b. Find the directional derivative of  $f(xyz) = xy^2 + yz^3$  at the point (2, -1, 1) in the direction of the vector I + 2J + 2K. Also, find the direction along which it is maximum. (07 Marks)
  - c. Prove that  $\nabla r^n = 2r^{n-2} R$  where R = xi + yj + zk and r = |R|. (06 Marks)
- 5 a. For what value of 'a' does this vector  $\vec{P} = (ax^2y + yz)\hat{I} + (xy^2 xz^2)\hat{J} + (2xyz 2x^2y^2)\hat{K}$  has zero divergence. Also find  $\nabla \times \vec{P}$ . (07 Marks)
  - b. Show that curl gra  $\phi = \vec{0}$
  - c. Given that  $\vec{F} = (x + y + 1)\vec{i} + \vec{j} (x + y)\vec{k}$ . Show that  $\vec{F} \cdot \text{curl } \vec{F} = 0$  (06 Marks)

6 a. Using the definition show that 
$$L\{t^n\} = \frac{n!}{s^{n+1}}$$
 (05 Marks)

b. Find 
$$L\{e^{-t} \cos at\}$$
 (05 Marks)

c. Find 
$$L\left\{\frac{\cos at - \cos bt}{t}\right\}$$
 (05 Marks)

d. Find 
$$L\{\cos(at+b)\}$$
 (05 Marks)

7 a. Show that 
$$L\{t^n\} = (-1)^n \frac{dn}{ds^n} f(s)$$
 where n is an integer. (05 Marks)

b. Find 
$$L^{-1} \left\{ \frac{s^2 - 10s + 13}{(s - 7)(s^2 - 5s + 6)} \right\}$$
 (05 Marks)

c. Find 
$$L^{-1} \left\{ \frac{s+2}{s^2 - 4s + 13} \right\}$$
 (05 Marks)

d. If 
$$L\{f(t)\} = f(s)$$
, show that  $L^{-1}\left\{\int_{s}^{\infty} f(s)ds\right\} = \frac{f(t)}{t}$  (05 Marks)

- 8 a. Solve the initial value problem using Laplace transforms  $(D^3 3D^2 + 3D 1)y = 0$  given that y(0) = 1, y'(0) = 0, y''(0) = 0
  - b. Solve the simultaneous equations  $x' y = e^t$ ,  $y' + x = \sin t$ , x(0) = 1, y(0) = 0. (10 Marks)

\* \* \* \* \*

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and/or equations written eg, 42+8=50, will be treated as malpractice.

USN

# Fourth Semester B.E. Degree Examination, Dec.09/Jan.10 Advanced Mathematics – II

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- If (l, m, n) be the direction cosines of a line then prove that  $l^2 + m^2 + n^2 = 1$ . 1 (06 Marks)
  - Find the value of K if the angle between the lines with direction ratios -2, 1, -1 and 1, -K, -1 (07 Marks)
  - c. Find the projection of the line segment AB on CD, where A = (3, 4, 5), B = (4, 6, 3), C = (-1, -1)(2, 4), D = (1, 0, 5)
- Find the angle between the planes x-y+2z=9 and 2x+y+z=7. (06 Marks) 2
  - Find the equation of the plane passing through the line of intersection of the planes x+2y-3z-1=0 and 3x-y+4z-5=0 and perpendicular to the plane 3x-y-3z+4=0
    - Find the point of intersection of the lines,  $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$  and  $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$

(07 Marks)

- a. If  $\overrightarrow{A} = 2i 3j k$  and  $\overrightarrow{B} = i + 4j 2k$ , find  $(\overrightarrow{A} + \overrightarrow{B}) \times (\overrightarrow{A} \overrightarrow{B})$ . (06 Marks)
  - b. For any three vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ , prove that  $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{b} \cdot \vec{c}) \vec{a}$ (07 Marks)
  - c. Prove that the four points 4i + 5j + k, -(j+k), (3i+9j+4k) and 4(-i+j+k) are coplanar.

(07 Marks)

- A particle moves along the curve  $x = 1 t^3$ ,  $y = 1 + t^2$  and z = 2t 5 where t is the time. Find the velocity and acceleration at t = 1. (06 Marks)
  - b. Find the unit vector normal to the surface  $x^2y 2xz + 2y^2z^4 = 10$  at (2, 1, -1). (07 Marks)
  - c. Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $z = x^2 + y^2 3$  at the point (2, -1, 2).(07 Marks)
- a. If  $\vec{F} = (3x^2y z)i + (xz^3 + y^4)j 2x^3z^2k$  find grad(div  $\vec{F}$ ) at (2, -1, 0). (06 Marks)
  - b. Find curl(curl  $\overrightarrow{A}$ ) given that  $\overrightarrow{A} = xyi + y^2zj + z^2yk$ . (07 Marks)
  - c. Show that  $\overrightarrow{F} = \frac{xi + yj}{x^2 + y^2}$  is both solenoidal and irrotational. (07 Marks)
- a. Find the Laplace transform of  $f(t) = \begin{cases} t, & 0 < t < 4 \\ 5, & t > 4 \end{cases}$ 6 (05 Marks)
  - Find L(t<sup>n</sup>) where n is a positive integer.

(05 Marks)

Find L[tcosat].

(05 Marks)

d. Find 
$$L\left[\frac{\cos at - \cos bt}{t}\right]$$
.

Find the inverse Laplace transform for the following:

a. 
$$\frac{(s+2)^3}{s^6}$$
 (05 Marks)

b. 
$$\frac{2s-1}{s^2+4s+29}$$
 (05 Marks)

c. 
$$\frac{2s^2 + 5s - 4}{s^3 + s^2 - 2s}$$
 (05 Marks)

d. 
$$\log\left(1-\frac{a^2}{s^2}\right)$$
 (05 Marks)

8 a. Use Laplace transform method to solve, 
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}$$
;  $y(0) = 0$ ,  $y'(0) = 0$  (10 Marks)

b. Find the inverse Laplace transformation of 
$$\frac{s^2}{(s-2)^3}$$
 (10 Marks)

\* \* \* \* \*

# 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Imperson Note: 1. On completing your answers, compulsorily draw diagraph cross lines on the remaining blank pages.

# Fourth Semester B.E. Degree Examination, May/June 2010 Advanced Mathematics – II

Time: 3 hrs.

Max. Marks:100

### Note: Answer any FIVE full questions.

- 1 a. Find the projection of the line AB on CD where A = (1, 2, 3), B = (-1, 0, 2), C = (1, 4, 2), D = (2, 0, -1). (06 Marks)
  - b. Find the angle between two lines whose direction cosines are given by l + 3m + 5n = 0 and 2mn 6nl 5lm = 0. (07 Marks)
  - c. A line makes angles  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  with diagonals of a cube. Prove that  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}.$  (07 Marks)
- 2 a. Find the equation of the plane passing through the points (3, 1, 2) and (3, 4, 4) and perpendicular to 5x + y + 4z = 0. (06 Marks)
  - b. Show that the points (2, 2, 0), (4, 5, 1), (3, 9, 4) and (0, -1, -1) are coplanar. Find the equation of the plane containing them. (07 Marks)
  - c. Find the equation of a straight line through (7, 2, -3) and perpendicular to each of the lines.

$$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$
 and  $\frac{x+2}{4} = \frac{y-3}{5} = \frac{z-4}{6}$ . (07 Marks)

3 a. Show that the position vectors of the vertices of a triangle  $\vec{a} = 3(\sqrt{3} \ \hat{i} - \hat{j})$ ,  $\vec{b} = 6\hat{j}$ 

$$\vec{c} = 3(\sqrt{3} \hat{i} + \hat{j})$$
 form an isosceles triangle. (06 Marks)

- b. A particle moves along the curve  $\vec{r} = 3t^2\hat{i} + (t^3 4t)\hat{j} + (3t + 4)\hat{k}$ . Find the components of velocity and acceleration at t = 2 in the direction  $\hat{i} 2\hat{j} + 2\hat{k}$ . (07 Marks)
- c. Find the angle between the normals to the surfaces  $x^2y^2 = z^4$  at (1, 1, 1) and (3, 3, -3). (07 Marks)
- 4 a. Find the directional derivatives of the function  $\phi = xyz$  along the direction of the normal to the surface  $xy^2 + yz^2 + zx^2 = 3$  at the point (1, 1, 1). (06 Marks)
  - b. Find the div  $\vec{F}$  and curl  $\vec{F}$  where  $\vec{F} = \nabla (x^3 + y^3 + z^3 3xyz)$ . (07 Marks)
  - c. If  $\vec{v} = 2xy \hat{i} + 3x^2y \hat{j} 3ayz \hat{k}$  is solenoidal at (1, 1, 1), find a. (07 Marks)
- 5 a. Find the unit normal vector to the surface xy + x + zx = 3 at (1, 1, 1). (06 Marks)

b. Find the constants 'a', 'b', 'c' such that the vector field  $(\sin y + az) \hat{i} + (bx \cos y + z) \hat{j} + (x + cy) \hat{k}$ 

is irrotational. Also find the scalar field  $\phi$  such that  $\overrightarrow{F} = \nabla \phi$ . (07 Marks)

c. Prove that  $\nabla^2 (\log r) = \frac{1}{r^2}$  where  $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$  and  $r = |\vec{r}|$ . (07 Marks)

6 a. Find the Laplace transform of Sin 2t Sin 3t. (05 Marks)

b. Find  $L\left[\frac{(1-e^t)}{t}\right]$ . (05 Marks)

c. Find  $L[e^{-t}(3 \sinh 2t - 2 \cosh 3t)]$ . (05 Marks)

d. Find the Laplace transform of  $f(t) = \begin{cases} t/\lambda & \text{when } 0 < t < \lambda \\ 1 & \text{when } t > \lambda \end{cases}$  (05 Marks)

7 a. Evaluate  $\int_0^\infty \frac{\text{Sint}}{t} dt$  using Laplace transform. (05 Marks)

b. Find the inverse Laplace transform of  $\frac{1}{(s^2 + 3s + 2)(s + 3)}$ . (05 Marks)

c. Find  $L^{-1} \left[ \frac{s-1}{s^2 - 6s + 25} \right]$ . (05 Marks)

d. Find  $L^{-1}\left[\log\left\{\frac{s^2+1}{s^2-s}\right\}\right]$ . (05 Marks)

8 a. Find  $L^{-1}\left[\frac{1}{s^2(s+5)}\right]$  using convolution theorem. (10 Marks)

b. Solve the differential equation  $y'' + 2y' + y = 6te^{-t}$  under the condition y(0) = 0 = y'(0) using Laplace transform. (10 Marks)

\* \* \* \* :